
Chatbot implementation using Deep
Natural Language Processing

Submitted in partial fulfillment of
the requirements for the award of the degree of

Bachelor of Technology
in

Computer Science and Engineering

Submitted by
Abhinav Dixit (20151012)
Ishaan Rajput (20154086)

Abhishek Sharma (20154077)
Harshita Rastogi (20154041)

John Prasad (20154010)

Under the guidance of
Dr. Divya Kumar

Department of Computer Science and
Engineering

Motilal Nehru National Institute Of Technology, Allahabad
Prayagraj, UP, India

April,2019

UNDERTAKING

Motilal Nehru National Institute of Technology Allahabad

We declare that the work presented in this report titled ”Chatbot imple-
mentation using Deep Natural Language Processing”, submitted to the
Computer Science and Engineering Department, Motilal Nehru National
Institute of Technology, Allahabad, for the award of the Bachelor of Tech-
nology degree in Computer Science & Engineering, is our original work.
We have not plagiarized or submitted the same work for the award of any
other degree. In case this undertaking is found incorrect, We accept that
our degree may be unconditionally withdrawn.

April, 2019

Abhinav Dixit (20151012)
Ishaan Rajput (20154086)

Abhishek Sharma (20154077)
Harshita Rastogi (20154041)

John Prasad (20154010)

i

Preface

This project builds a chat-bot using Deep Natural Language Processing.
It implements a seq2seq model (an encoder-decoder Recurrent Neural Net-
work) for a simple conversation task. This model can be trained to map
an input sequence (questions) to an output sequence (response), which
are not necessarily of the same length as each other. We have used vari-
ous Natural Language Processing techniques namely Bag Of Words(BoW)
model, tokenization and word embedding.

ii

CERTIFICATE

Certified that the work contained in the report titled “Chatbot im-
plementation using Deep Natural Language Processing”, by Abhinav
Dixit, Ishaan Rajput, Abhishek Sharma, Harshita Rastogi and John
Prasad, has been carried out under my supervision and that this work
has not been submitted elsewhere for a degree.

(Dr. Divya Kumar)
CSED Dept.

M.N.N.I.T, Allahabad

iii

ACKNOWLEDGEMENT

We are profoundly grateful to our mentor Dr. Divya Kumar for his con-
stant help, motivation, support and technical guidance. We express our
sincere appreciation for his encouragement and advice that enabled us to
pursue this project. Due to his assistance and guidance, we as a team were
able to make this project a success.

iv

Contents

Undertaking i

Preface ii

Certificate iii

Acknowledgement iv

1 Introduction 1
1.1 Motivation . 1

2 Related Work 2

3 Proposed Work 4
3.1 Natural Language Processing 4

3.1.1 Tokenisation & Padding 4
3.1.2 Word Embedding 4

3.2 Sequence-To-Sequence Model 5
3.2.1 Gradient Clipping 5
3.2.2 Early Stopping . 6

4 Background 7
4.1 Artificial Neural Networks 7

4.1.1 Artificial Neurons 7
4.1.2 Feed-forward Pass 7

4.2 Recurrent Neural Networks 8
4.2.1 Introduction . 8
4.2.2 Basic Structure . 8
4.2.3 Unfolding of a RNN 9
4.2.4 Backpropagation in a Recurrent Neural Network . . 10

4.3 Long Short Term Memory (LSTM) 11
4.3.1 Introduction . 11

v

4.3.2 Architecture of LSTM 11
4.4 Sequence to Sequence Model 13

4.4.1 Attention Mechanism 14
4.5 Natural Language Processing (NLP) 16

4.5.1 Introduction . 16
4.5.2 NLP working . 16
4.5.3 Bag of Words in NLP 17
4.5.4 Word Embedding 17

5 Experimental Setup and Results Analysis 19
5.1 Dataset . 19
5.2 Softwares and Hardwares Used 20
5.3 Result Analysis . 21

5.3.1 First trained model 21
5.3.2 Second trained model 22
5.3.3 Third trained model 23

6 Conclusion and Final Results 24

7 Future Works 25
7.1 Adding in more data . 25
7.2 Keep Feeding chatbot With New Information 25
7.3 Specialized dataset . 25
7.4 Integration of voice . 25

vi

Chapter 1

Introduction

A chatbot is an artificial intelligence (AI) software that can simulate a
conversation (or a chat) with a user in natural language through messaging
applications, websites, mobile apps or through the telephone. However,
from a technological point of view, a chatbot only represents the natural
evolution of a Question Answering system leveraging Natural Language
Processing (NLP).

Rule based models make it easy for anyone to create a bot. But it is in-
credibly difficult to create a bot that answers complex queries. The pattern
matching is kind of weak and hence, AIML based bots suffer when they
encounter a sentence that doesn’t contain any known patterns. What if we
can build a bot that learns from existing conversations (between humans).
This is where Machine Learning comes in. Advances in natural language
processing have made deep learning approaches very popular. There are
several deep learning approaches to choose from, with new methods con-
stantly being developed.

1.1 Motivation

Most businesses these days have a web presence. But with being on the
internet, boundaries of day and night, availability and unavailability have
changed, so have user expectations. This is probably the biggest reason
to use them. Bots give the user an interactive experience. It makes cus-
tomers feel they are working with someone to help resolve their issue. If
done right, bots can help customers find what they are looking for and
make them more likely to return. Chatbots can be useful in many aspects
of the customer experience, including providing customer service, present-
ing product recommendations and engaging customers through targeted
marketing campaigns.

1

Chapter 2

Related Work

The rise of conversational AI has been made possible by recent break-
throughs in human parity level speech detection and smarter sentiment
analysis. Apart from the generative methods which require deep NLP
model to implement a chatbot, the following approaches have been used
in the past for building of chatbots-

• Retrieval-Based: When given user input, the system uses heuris-
tics to locate the best response from its database of predefined re-
sponses. Dialogue selection is essentially a prediction problem, and
using heuristics to identify the most appropriate response template
may involve simple algorithms like keywords matching or it may re-
quire more complex processing with machine learning. Regardless of
the heuristic used, these systems only regurgitate predefined responses
and do not generate new output.

• Ensemble Methods: This approach may use a rule-based approach
to sing a song, a retrieval-based approach to talk about the news, and
a generative approach to handle other, unspecified use cases. The
most advanced systems use hierarchical reinforcement learning, which
uses a low-level dialogue policy to address the immediate task, while
a higher-level policy coordinates model selection or other strategic
goals.

• Grounded Learning: Human dialogue relies extensively on context
and external knowledge. This inability of chatbots to incorporate real-
world knowledge also means that generative models are still very bad
at creating useful or meaningful chatter. Most human knowledge does
not reside in structured datasets and continue to exist as vast quanti-
ties of unstructured data, in the form of text and images. Grounded
learning still faces many problems and challenges, one of which is the

2

challenge of accessing knowledge bases in the context of end-to-end
differentiable training for neural networks. For backpropagation to be
used to train an entire network, the mechanisms which access external
knowledge bases must also be fully differentiable. Grounded learning
is still an area of active research.

3

Chapter 3

Proposed Work

In this project, we use generative methods on a large amount of conversa-
tional training data in order to learn how to generate new dialogue that
resembles it. But before feeding the dataset into the sequence-to-sequence
model, we require to do natural language processing in order to convert
the dataset into a usable form.

3.1 Natural Language Processing

3.1.1 Tokenisation & Padding

We first work on the dataset to convert the variable length sequences into
fixed length, by the use of padding. We use a few special symbols(tokens)
to fill in the sequences.

• SOS : Start of Sentence

• EOS : End of Sentence

• PAD : Filler

• OUT : Unknown; word not in vocabulary or not frequent enough

After this, each word is assigned a unique integer based on the frequency
of the words, thus converting each sentence into a fixed-length(i.e. 25)
vector of tokens.

3.1.2 Word Embedding

Through word embedding, we convert each word to a dense vector of a
fixed size(i.e. 1024). Embeddings make it easier to do machine learning
on large inputs like sparse vectors representing words. Thus, each sequence

4

after doing natural language processing is converted into a 2D vector of
dimensions 1024 X 25.

3.2 Sequence-To-Sequence Model

Sequence-To-Sequence Model(5) uses 2 LSTM’s one after another in order
to work with sequence of values(words in our case). It mainly consists
of two structures–Encoder & Decoder. The encoder encodes the informa-
tion of the input sentence into a single LSTM layer. The decoder finally
unwraps the encoded layer in order to produce a series of outputs, thus
framing the required response.

Figure 3.1: Seq2Seq model

3.2.1 Gradient Clipping

Gradient clipping limits the magnitude of the gradient and can make
stochastic gradient descent (SGD) behave better in the vicinity of steep
cliffs. The steep cliffs commonly occur in recurrent networks in the area
where the recurrent network behaves approximately linearly. SGD with-
out gradient clipping overshoots the landscape minimum, while SGD with
gradient clipping descends into the minimum. Here we clip the gradient
value between -5 and +5.

5

Figure 3.2: Gradient Clipping

3.2.2 Early Stopping

In machine learning, early stopping is a form of regularization used to
avoid overfitting when training a learner with an iterative method, such
as gradient descent. Early stopping is a practice of stopping the training
of a neural network early before it has overfit the training dataset. In our
model, we keep checking if the current validation loss(calculated twice per
epoch) is least among all epochs. If not, we increment the early stopping
counter and stop the training once this counter reaches 100. The counter
is reset to 0 whenever the validation loss is found to be minimum.

6

Chapter 4

Background

4.1 Artificial Neural Networks

4.1.1 Artificial Neurons

Artificial neural network(3) consists of artificial neurons. Artificial neuron
is a mathematical function modeling a biological neuron. The neuron
receives one or more weighted inputs and fires an output. The inputs
represent dendrites and output represents an axon within neuroscience
perspective.

4.1.2 Feed-forward Pass

The neurons can be interconnected to form a graph. The output of a
neuron is used as an input for other neurons. Such a network is called
Feed-forward neural network-information flows only in one direction.

The neurons are divided into the disjoint sets, called layers l1,..., lk.
Layers l1,..., lk1 are hidden layers, lk is an output layer. Formally layer
l0 is also considered, denoting the input data also called an input layer.
The nodes in layer li receive as an input only the outputs of one or more
connected neurons in layer li1. Neurons in a fully connected layer have
connections to all activations of neurons in the previous layer. The outputs
of an input layer l0 are the input data.

The activations of neurons in output layer lk represent the output of the
network. It may represent probabilities of belonging to classes. The whole
computation on a feed–forward neural network is designed with Forward
propagation algorithm.

7

Figure 4.1: Model of a feed-forward neural network with one fully connected hidden layer
and fully connected output layer

4.2 Recurrent Neural Networks

4.2.1 Introduction

Recurrent Neural Networks (RNN)(4) are a powerful and robust type of
neural networks and belong to the most promising algorithms out there at
the moment because they are the only ones with an internal memory.

RNN’s are relatively old, like many other deep learning algorithms.
They were initially created in the 1980’s, but can only show their real
potential since a few years, because of the increase in available computa-
tional power, the massive amounts of data that we have nowadays and the
invention of LSTM in the 1990’s.

Because of their internal memory, RNN’s are able to remember impor-
tant things about the input they received, which enables them to be very
precise in predicting what’s coming next. This is the reason why they are
the preferred algorithm for sequential data like time series, speech, text, fi-
nancial data, audio, video, weather and much more because they can form
a much deeper understanding of a sequence and its context, compared to
other algorithms.

4.2.2 Basic Structure

In a RNN, the information cycles through a loop. When it makes a de-
cision, it takes into consideration the current input and also what it has
learned from the inputs it received previously. A Recurrent Neural Net-
work is able to remember exactly that, because of it’s internal memory.
It produces output, copies that output and loops it back into the net-
work.Recurrent Neural Networks add the immediate past to the present.
Therefore a Recurrent Neural Network has two inputs, the present and

8

the recent past. This is important because the sequence of data contains
crucial information about what is coming next, which is why a RNN can
do things other algorithms can’t.

Figure 4.2: Difference in the information flow between a RNN and a Feed-Forward Neural
Network

A Feed-Forward Neural Network assigns, like all other Deep Learning
algorithms, a weight matrix to its inputs and then produces the output.
Note that RNN’s apply weights to the current and also to the previous in-
put. Furthermore they also tweak their weights for both through gradient
descent and backpropagation through time.

4.2.3 Unfolding of a RNN

By unrolling(or unfolding) we simply mean that we write out the network
for the complete sequence. On the left, you can see the RNN, which is
unrolled after the equal sign. Note that there is no cycle after the equal
sign since the different timesteps are visualized and information gets passed
from one timestep to the next.

Figure 4.3: A recurrent neural network and the unfolding in time of the computation
involved in its forward computation

9

The formulas that govern the computation happening in a RNN are as
follows:

• xt is the input at time step t. For example, x1 could be a one-hot
vector corresponding to the second word of a sentence.

• st is the hidden state at time step t. It is the “memory” of the network.
st is calculated based on the previous hidden state and the input at
the current step:

st = f(Uxt +Wst−1) (4.2.1)

The function f is usually a nonlinearity such as tanh or ReLU(Rectified
Linear Unit). s−1, which is required to calculate the first hidden state,
is typically initialized to all zeroes.

• ot is the output at step t. For example, if we wanted to predict the
next word in a sentence it would be a vector of probabilities across
our vocabulary.

ot = softmax(V st). (4.2.2)

4.2.4 Backpropagation in a Recurrent Neural Network

In case of a backward propagation in RNN, we figuratively going back
in time to change the weights, hence we call it the Back propagation
through time(BPTT). In case of an RNN, if ytis the predicted value ȳt
is the actual value, the error is calculated as a cross entropy loss-

Et(ȳt, yt) = –ȳt log(yt) (4.2.3)

E(ȳ, y) = –
∑

ȳt log(yt) (4.2.4)

The steps for backpropagation are as follows-

1. The cross entropy error is first computed using the current output
and the actual output.

2. Remember that the network is unrolled for all the time steps.

3. For the unrolled network, the gradient is calculated for each time step
with respect to the weight parameter.

10

4. Now that the weight is the same for all the time steps the gradients
can be combined together for all time steps.

5. The weights are then updated for both recurrent neuron and the dense
layers.

4.3 Long Short Term Memory (LSTM)

4.3.1 Introduction

Long Short-Term Memory (LSTM) networks are an extension for recurrent
neural networks, which basically extends their memory. Therefore it is well
suited to learn from important experiences that have very long time lags
in between.

The units of an LSTM are used as building units for the layers of a
RNN, which is then often called an LSTM network.

LSTMs enable RNNs to remember their inputs over a long period of
time. This is because LSTMs contain their information in a memory, that
is much like the memory of a computer because the LSTM can read, write
and delete information from its memory.

This memory can be seen as a gated cell, where gated means that the
cell decides whether or not to store or delete information (e.g if it opens the
gates or not), based on the importance it assigns to the information. The
assigning of importance happens through weights, which are also learned
by the algorithm. This simply means that it learns over time which infor-
mation is important and which not.

4.3.2 Architecture of LSTM

A typical LSTM network is comprised of different memory blocks called
cells.There are two states that are being transferred to the next cell - the
cell state and the hidden state. The memory blocks are responsible for
remembering things and manipulations to this memory is done through
three major mechanisms, called gates. Each of them is being discussed
below-

• Forget Gate: A forget gate is responsible for removing information
from the cell state. The information that is no longer required for
the LSTM to understand things or the information that is of less
importance is removed via multiplication of a filter.

11

This gate takes in two inputs- ht−1 and xt. ht−1 is the hidden state
from the previous cell or the output of the previous cell and xt is the
input at that particular time step. The given inputs are multiplied by
the weight matrices and a bias is added. Following this, the sigmoid
function is applied to this value. The sigmoid function outputs a
vector, with values ranging from 0 to 1, corresponding to each number
in the cell state. Basically, the sigmoid function is responsible for
deciding which values to keep and which to discard. If a ‘0’ is output
for a particular value in the cell state, it means that the forget gate
wants the cell state to forget that piece of information completely.
Similarly, a ‘1’ means that the forget gate wants to remember that
entire piece of information. This vector output from the sigmoid
function is multiplied to the cell state.

Figure 4.4: Forget Gate

• Input Gate: The input gate is responsible for the addition of infor-
mation to the cell state. This addition of information is basically a
three-step process as follows-

1. Regulating what values need to be added to the cell state by
involving a sigmoid function. This is basically very similar to the
forget gate and acts as a filter for all the information from ht−1

and xt.

2. Creating a vector containing all possible values that can be added
(as perceived from ht−1 and xt) to the cell state. This is done using
the tanh function, which outputs values from -1 to +1.

3. Multiplying the value of the regulatory filter (the sigmoid gate)
to the created vector (the tanh function) and then adding this
useful information to the cell state via addition operation.

Once this three-step process is done with, we ensure that only that
information is added to the cell state that is important and is not
redundant.

12

Figure 4.5: Input Gate

• Output Gate: The job of selecting useful information from the cur-
rent cell state and showing it out as an output is done via the output
gate. The functioning of an output gate can again be broken down
to three steps-

1. Creating a vector after applying tanh function to the cell state,
thereby scaling the values to the range -1 to +1.

2. Making a filter using the values of ht−1 and xt, such that it can
regulate the values that need to be output from the vector created
above. This filter again employs a sigmoid function.

3. Multiplying the value of this regulatory filter to the vector created
in step 1, and sending it out as a output and also to the hidden
state of the next cell.

Figure 4.6: Output Gate

4.4 Sequence to Sequence Model

Sequence To Sequence(2) model introduced in Learning Phrase Repre-
sentations using RNN Encoder-Decoder for Statistical Machine Transla-
tion has since then, become the Go-To model for Dialogue Systems and
Machine Translation. It consists of two RNNs : An Encoder and a De-
coder. The encoder takes a sequence(sentence) as input and processes one

13

symbol(word) at each timestep. Its objective is to convert a sequence of
symbols into a fixed size feature vector that encodes only the important
information in the sequence while losing the unnecessary information. You
can visualize data flow in the encoder along the time axis, as the flow of
local information from one end of the sequence to another.

Figure 4.7: Seq2Seq model

Each hidden state influences the next hidden state and the final hidden
state can be seen as the summary of the sequence. This state is called
the context or thought vector, as it represents the intention of the se-
quence. From the context, the decoder generates another sequence, one
symbol(word) at a time. Here, at each time step, the decoder is influenced
by the context and the previously generated symbols.

4.4.1 Attention Mechanism

One of the limitations of seq2seq(1) framework is that the entire informa-
tion in the input sentence should be encoded into a fixed length vector,
context. As the length of the sequence gets larger, we start losing consid-
erable amount of information. This is why the basic seq2seq model doesn’t
work well in decoding large sequences. The attention mechanism, allows
the decoder to selectively look at the input sequence while decoding. This
takes the pressure off the encoder to encode every useful information from
the input.

14

Figure 4.8: Attention Mechanism

During each timestep in the decoder, instead of using a fixed context
(last hidden state of encoder), a distinct context vector ci is used for gen-
erating word yi. This context vector ci is basically the weighted sum of
hidden states of the encoder.

ci =
n∑

j=1

αijhj (4.4.1)

where n is the length of input sequence, hj is the hidden state at
timestep j.

αij = exp(eij)/
n∑

k=1

exp(eik) (4.4.2)

eij is the alignment model which is function of decoder’s previous hidden
state si−1 and the jth hidden state of the encoder. This alignment model
is parameterized as a feedforward neural network which is jointly trained
with the rest of model.

Each hidden state in the encoder encodes information about the local
context in that part of the sentence. As data flows from word 0 to word
n, this local context information gets diluted. This makes it necessary
for the decoder to peak through the encoder, to know the local contexts.
Different parts of input sequence contain information necessary for gener-
ating different parts of the output sequence. In other words, each word
in the output sequence is aligned to different parts of the input sequence.
The alignment model gives us a measure of how well the output at posi-
tion i match with inputs at around position j. Based on which, we take a

15

weighted sum of the input contexts (hidden states) to generate each word
in the output sequence.

4.5 Natural Language Processing (NLP)

4.5.1 Introduction

Natural language processing (NLP) is a branch of artificial intelligence
that helps computers understand, interpret and manipulate human lan-
guages. NLP draws from many disciplines, including computer science
and computational linguistics, in its pursuit to fill the gap between human
communication and computer understanding.

Natural language processing (NLP) is not a new science, the technology
is rapidly advancing thanks to an increased interest in human-to-machine
communications, plus an availability of big data, powerful computing and
enhanced algorithms. As a human, one may speak and write in English,
Spanish or Chinese. But a computer’s native language – known as machine
code or machine language – is largely incomprehensible to most people.
At any device’s lowest levels, communication occurs not with words but
through millions of zeros and ones that produce logical actions.

Natural language processing helps computers communicate with hu-
mans in their own language and scales other language-related tasks. For
example, NLP makes it possible for computers to read text, hear speech,
interpret it, measure sentiment and determine which parts are important.
Today’s machines can analyze more language-based data than humans,
without fatigue and in a consistent, unbiased way. Considering the stag-
gering amount of unstructured data that’s generated every day, from med-
ical records to social media, automation will be critical to fully analyze
text and speech data efficiently.

4.5.2 NLP working

Natural language processing includes many different techniques for inter-
preting human language, ranging from statistical and machine learning
methods to rules-based and algorithmic approaches. Basic NLP tasks in-
clude tokenization and parsing, lemmatization/stemming, part-of-speech
tagging, language detection and identification of semantic relationships.
In general terms, NLP tasks break down language into shorter, elemental
pieces, try to understand relationships between the pieces and explore how
the pieces work together to create meaning. Tasks involved in NLP are:

16

• Content categorization

• Topic discovery and modeling

• Contextual extraction

• Sentiment analysis

• Speech-to-text and text-to-speech conversion

• Document summarization

• Machine translation

In all these cases, the overarching goal is to take raw language input
and use linguistics and algorithms to transform or enrich the text in such
a way that it delivers greater value.

4.5.3 Bag of Words in NLP

A bag-of-words model, or BoW for short, is a way of extracting features
from text for use in modeling, such as with machine learning algorithms.
A bag-of-words is a representation of text that describes the occurrence of
words within a document. It involves two things:

• A vocabulary of known words.

• A measure of the presence of known words.

It is called a “bag” of words, because any information about the order
or structure of words in the document is discarded. The model is only
concerned with whether known words occur in the document, not where
in the document.

In BoW, vocabulary is designed, which contains all the words from the
dataset. After that the next step is to score the words in each document.
The objective is to turn each document of free text into a vector that we
can use as input or output for a machine learning model.

4.5.4 Word Embedding

Word Embedding is a technique for learning dense representation of words
in a low dimensional vector space. Each word can be seen as a point
in this space, represented by a fixed length vector. Ideally, an embedding
captures some of the semantics of the input by placing semantically similar

17

inputs close together in the embedding space. The word vectors have
some interesting properties.

Figure 4.9: Word Embedding

Word Embedding is typically done in the first layer of the network :
Embedding layer, that maps a word (index to word in vocabulary) from
vocabulary to a dense vector of given size. In the seq2seq model, the
weights of the embedding layer are jointly trained with the other parame-
ters of the model.

18

Chapter 5

Experimental Setup and Results
Analysis

5.1 Dataset

This dataset contains a large metadata-rich collection of fictional conver-
sations extracted from raw movie scripts:

• 220,579 conversational exchanges between 10,292 pairs of movie char-
acters.

• in total 304,713 dialogues.

Figure 5.1: Dataset Sample(movie lines.txt)

This above dataset shows the dialogueID, followed by the speaker, the
movieID, the name of the speaker and finally the dialogue.

19

Figure 5.2: Dataset Sample(movie conversations.txt)

This above dataset shows by the speaker, the listener, the movie and the
dialogues being spoken in a single conversation. The string ”+++$+++”
is used as a separator.

5.2 Softwares and Hardwares Used

• Software:

Python 3

Tensor-flow

Keras

Cuda (NVIDIA Computing Toolkit)

Matplotlib

SciPy

• Recommended Hardware:

NVIDIA GT - 960 and higher

Intel i5 - 6th gen(Dual Core) and higher

GPU - VRAM : 4GB and higher

SSDs

RAM : 8GB and higher.

20

5.3 Result Analysis

5.3.1 First trained model

For our first model, we used a relatively simple model. We used only
the first 80000 pair of question & answers. The dataset was converted
into word embedding of size 128. It was then fed into a seq2seq model
consisting of 2 LSTM layers each for encoder & decoder layers of size 128.
This model was trained for 500 epochs using Adam Optimizer for loss
reduction.

Following is the validation loss & accuracy for each epoch:

(a) Validation Loss per Epoch (b) Accuracy per Epoch

The accuracy increases initially but soon the model stops learning in-
dicating that the model is too simple for the given dataset. Furthermore,
the output of the model were sentences which were both grammatically
and contextually incorrect.

Figure 5.4: Chatbot responses

21

5.3.2 Second trained model

In order to tackle underfitting, we increased the model complexity. This
time we used word embeddings of size 1024. The seq2seq model consisted
of 2 LSTM layers for encoder & decoder layers of size 1024. We also
used techniques like early stopping and gradient clipping for better result.
The model was trained for 60 epochs this time using Adam Optimizer.
The dataset used for training above model consisted of 1,00,000 pair of
questions and answers.

Figure 5.5: Validation Loss per Epoch

Here we can see that the model overfits after 20 epochs. When we tested
the outputs for different inputs, we got repeated phrases as responses for all
the inputs. Due to overfitting our model tends to prioritize high-priority,
high-probability response content.

Figure 5.6: Chatbot responses

22

5.3.3 Third trained model

The previous model suffered due to lack of dataset thus resulting in over-
fitting. Hence, this time we used the complete dataset(around 220000 pair
of question and responses). We increased the number of LSTM layers from
2 to 3. The rest hyperparameters were kept same as the second trained
model. The model was trained for 70 epochs. This produced satisfactory
results as you can see from the graph below.

Figure 5.7: Validation Loss per Epoch

The model did not encounter overfitting and was able to reduce valida-
tion loss to appreciable value.

23

Chapter 6

Conclusion and Final Results

In our project, we targeted to make a model that is able to predict con-
versations that are both grammatically as well contextually correct. The
chatbot should also be capable of replicating the conversation style of the
speakers based on the dataset. Here are few of the results while testing
the chatbot at the final stage of the project.

Figure 6.1: Chatbot responses

We figured out that when we increased the number of layers in LSTM
encoder and decoder, we got appreciable results. However due to lack of
computation power, we could not use a deeper LSTM thus resulting in
unsatisfactory responses some times.

It can be also noted that the responses given by the chatbot are very
domain specific depending on the dataset that it is trained on. The movies
dataset that we used for this project is pretty diverse in terms of the human
conversations. To use this chatbot for a specialized purpose, we should
train it on a specialized dataset.

24

Chapter 7

Future Works

7.1 Adding in more data

The usual tendency of a Deep Learning model is that it performs better
when it is provided with more data. Therefore, with time, as the data will
increase the model will be able to be trained better. This will produce
better accuracy and results.

7.2 Keep Feeding chatbot With New Information

Chatbot need to be fed continuously with real-time relevant information
to stay up to date otherwise it will become outdated. To act more real
and human-like, every chatbot must be maintained regularly and brought
up to date so as to give the best results.

7.3 Specialized dataset

To make a chatbot specific to a topic like movies, games, markets etc, we
have to use dataset related to that topic only. It will give better results
for that particular domain.

7.4 Integration of voice

To make chatbot feasible to blind or illiterate people, voice recognition
and text-to-speech can be added as extra feature.

25

Bibliography

[1] Chatbots with seq2seq. http://complx.me/

2016-06-28-easy-seq2seq/.

[2] Implementing a sequence-to-sequence model. https://hackernoon.

com/implementing-a-sequence-to-sequence-model-45a6133958ca.

[3] Cho, K. Learning phrase representations using rnn encoder–decoder
for statistical machine translation. Master’s thesis, University de Mon-
treal, September 2014.

[4] Kostadinov, S. Recurrent Neural Networks with Python Quick Start
Guide. Packt.com, 2018.

[5] Vinyals, O. Sequence to sequence learning with neural networks.
Master’s thesis, Google, December 2014.

26

